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Abstract: Background/Objectives: Our study aimed to determine the accuracy of the
artificial intelligence-based Diagnocat system (DC) in detecting periapical lesions (PL) on
panoramic radiographs (PRs). Methods: 616 teeth were selected from
357 panoramic radiographs, including 308 teeth with clearly visible periapical radiolu-
cency and 308 without any periapical lesion. Three groups were generated: teeth with
radiographic signs of caries (Group 1), teeth with coronal restoration (Group 2), and teeth
with root canal filling (Group 3). The PRs were uploaded to the Diagnocat system for
evaluation. The performance of the convolutional neural network in detecting PLs was
assessed by its sensitivity, specificity, and positive and negative predictive values, as well
as the diagnostic accuracy value. We investigated the possible effect of the palatoglossal air
space (PGAS) on the evaluation of the AI tool. Results: DC identified periapical lesions
in 240 (77.9%) cases out of the 308 teeth with PL and detected no PL in 68 (22.1%) teeth
with PL. The AI-based system detected no PL in any of the groups without PL. The overall
sensitivity, specificity, and diagnostic accuracy of DC were 0.78, 1.00, and 0.89, respectively.
Considering these parameters for each group, Group 2 showed the highest values at 0.84,
1.00, and 0.95, respectively. Fisher’s Exact test showed that PGAS does not significantly
affect (p = 1) the detection of PL in the upper teeth. The AI-based system showed lower
probability values for detecting PL in the case of central incisors, wisdom teeth, and canines.
The sensitivity and diagnostic accuracy of DC for detecting PL on canines showed lower
values at 0.27 and 0.64, respectively. Conclusions: The CNN-based Diagnocat system
can support the diagnosis of PL on PRs and serves as a decision-support tool during
radiographic assessments.

Keywords: artificial intelligence; deep learning; dental digital radiography; panoramic
radiography; periapical diseases

1. Introduction
One of the most important additional diagnostic methods is radiological examination

in dentistry, which can aid in the detection of periapical lesions (PLs) [1]. PL develops along
the root of the tooth, usually preceded by the necrosis of the pulp. It is caused by bacteria
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penetrating through the root canal into the periapical space, resulting in a progressive
process inducing bone resorption with a characteristic radiographic appearance [2,3]. Based
on the latest systematic review and meta-analysis, Tibúrcio-Machado et al. [4] found a 52%
prevalence of PL in adults, and current clinical practice considers the use of radiological
imaging to be of crucial importance for a definitive diagnosis [5]. Various radiographic
methods such as periapical and panoramic radiographs (PRs), and additionally, cone beam
computed tomography (CBCT), are some of the most commonly used modalities for the
detection of apical lesions [6]. Even though CBCT exhibits notably superior discriminatory
capabilities compared to periapical radiographs [7], its widespread usage is limited due to
higher patient doses and significant associated costs, making it applicable to only a few
specific indications. PRs, which are widely used in dental clinics, can provide the dentist
with numerous data concerning diagnosis and treatment planning [8]. Their widespread
use may be justified by the fact that they provide the dentist with a relatively good overview
of the patient’s dental status with a relatively lower radiation dose. Noteworthily, there is
a substantial difference among dental professionals in the reading of PRs based on their
skills and previous experience [9]. On the other hand, the image quality and accuracy of
the radiographic evaluation of PRs are greatly influenced by position errors such as the
incorrect position of the tongue during exposure. The presence of a radiolucent air space
between the dorsal surface of the tongue and the palate (palatoglossal air space, PGAS)
can impair the evaluation of the apical region of the maxillary teeth, which can lead to
misdiagnoses of PL [10]. Periapical radiographs are the most frequently used imaging
technique for identifying changes in the periapical region [11]. However, both periapical
and PRs face inherent challenges, including the superimposition of anatomical structures,
geometrical distortion, anatomical noise, and the limitation of being two-dimensional
in nature [12].

Computer-aided diagnosis (CAD) software supports clinicians during their evaluation.
These software draw the attention of clinicians to areas with potential pathologies on
medical images, and thus can significantly enhance and expedite the work, providing
valuable support in their daily tasks [13]. Using artificial intelligence (AI)-based systems
in dental radiology can provide many advantages and increase the accuracy and speed
of diagnostic assessment [14,15]. Radiology was one of the first medical fields where
AI appeared. This is primarily due to the generation of an enormous amount of digital
radiographic data, which serves as the foundation for the development and application of
AI, and the larger the amount and heterogeneity of data it encounters, the more accurately
it can solve a given task [16]. Deep learning (DL) as a subset of AI learns and improves
without specific instructions or programming [17]. In radiology, a subgroup of neural
networks, convolutional neural networks (CNNs), can be used. U-Net is a widely applied
CNN architecture in image analysis, which was created to efficiently leverage a limited
dataset while upholding both speed and accuracy [18]. In the field of dentistry, DL can
be used for numerous tasks including the detection and classification of caries lesions on
PRs [19], the segmentation and detection of PLs on CBCT images [20], the detection of
periodontal bone loss on PRs [21], and cephalometric landmark detection [22].

Currently, there is still growing interest in the AI-assisted detection of PL on
PRs [6,23–27]. This research aims to evaluate the effectiveness of an AI-based tool in a
real clinical setting, focusing on its role in assisting with radiographic evaluations of PL on
PRs. This study focused on key metrics such as sensitivity, specificity, predictive values
(both positive and negative), and the proportion of correct classifications, using the ground
truth provided by experienced dentomaxillofacial radiologists.
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2. Materials and Methods
In our retrospective radiographic research, 357 PRs were collected and assessed by

three independent observers: a fifth-year dental student, a general dentist, and a den-
tomaxillofacial radiologist with more than ten years of experience (Figure 1). Before the
evaluation of PRs, observers underwent calibration via a training session supervised by
a senior dentomaxillofacial radiologist with more than thirty years of experience. They
reviewed standardized radiographs and discussed possible pitfalls during the assessment
of PRs. Regarding the PRs, 308 teeth with visible periapical radiolucency and 308 teeth
without any periapical radiolucency (PARL) were selected. During the selection of teeth
free of PARL, the tooth type was matched with the tooth type of teeth with periapical
lesions. All the selected teeth had to meet one of the following additional inclusion crite-
ria: a carious lesion was visible on the dental crown (Group 1), restoration in the dental
crown was present without root canal filling (Group 2), or a root canal filling was present
(Group 3). Furthermore, the presence of palatoglossal airspace (PGAS) was recorded if it
was visible on the apical region of the selected upper tooth. Endo-periodontal lesions and
obvious radiographic signs of previous apical surgery were considered exclusion criteria.
The ground truth was determined during personal sessions by two dentomaxillofacial
radiologists, one with more than ten and one with more than thirty years of experience. In
instances where there was disagreement regarding the detection of PL on the selected PRs,
a consensus was achieved in every case.
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Figure 1. Data selection flowchart.

All radiographs were acquired at the Department of Oral Diagnostics, Faculty of
Dentistry, Semmelweis University using an Orthopantomograph 3D Pro appliance (KaVo,
Biberach an der Riss, Germany) with the following settings: 66 kV, 5.0 mA, and 16 s. The
selection was performed using the department’s patient archiving and communication
system (IMPAX software, v.6.5.2.657, Agfa HealthCare, Mortsel, Belgium). The human
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observers were allowed to adjust the brightness or contrast and were able to use mag-
nification in the IMPAX software. The PRs were evaluated on a Samsung S24F350FHU
(Samsung, Seoul, Republic of Korea) (full HD, resolution: 1920 × 1200 pixels) monitor. The
metadata for the selected radiographs were documented, including the study date, patient
age, and the specific tooth and its group depicted in the radiograph. This information was
stored separately from the downloaded anonymized image data. The applied DC system
was provided only by the encrypted anonymized image files. The study protocol was
performed in accordance with the Declaration of Helsinki and approved by the Semmelweis
University Regional and Institutional Committee of Science and Research Ethics (SE RKEB
138/2020). Access to the collected anonymized image files was restricted to observers,
while only human observers had access to the metadata. It is important to note that the
sample selection process did not favor any particular sex.

To visualize and understand the possible effect of projection geometry of upper and
lower periapical regions [28], one of the authors (B.T.S.) of the present manuscript provided
his functional cast and cone-beam computed tomography (CBCT) data acquired for other
treatment purposes. Regarding the CBCT data, the distances between the radiographic
apex of the upper and lower first molars, canines, central incisors, and the vestibular surface
of the alveolar process were determined. In the case of multirooted teeth, the geometric
center of apices was used for the distance measurement. Hereinafter, holes were prepared
on the cast using a dental bur at the selected spots with the prerecorded depth values. Into
each prepared cavity of the upper cast, a 5 mm diameter aluminum ball was inserted and
fixed with dental wax. Subsequently, the upper and lower casts were fitted in the dental
intercuspidal position with dental wax and a PR was taken using the same panoramic X-ray
unit (Orthopantomograph 3D Pro). This process was also performed for the lower cast after
transferring the aluminum balls from the upper sample. This approach was presumed to be
useful in assessing how the standard settings of the panoramic imaging system used in our
study affect the projection geometry of an object with uniform dimensions in all directions.
By placing a known reference object (aluminum ball) in specific anatomical locations, we
aimed to analyze potential distortions or magnifications introduced by the PR under these
standard settings. This evaluation provides insights into how different anatomical regions
are projected onto the final image and helps us better interpret the results obtained from
panoramic radiographs in periapical diagnostics.

A 95% confidence interval (CI) of sensitivity, specificity, and other diagnostic test pa-
rameters was calculated using the exact binomial method. For teeth with PARL, additional
statistical analyses were conducted. As a univariate analysis, we calculated the hit rate with
its CI for all cases and separately for Group 1, Group 2, and Group 3. As we assumed that
the hit rate of the AI prediction depends on the type of teeth, a logistic regression model
was also applied. The outcome variable was the AI prediction, and Group 1, Group 2, and
Group 3 were used as predictors to control the effect for the tooth type as additive terms
in multivariate analyses. The possible correlation between the software evaluation and
position error derived from PGAS was also assessed using Fisher’s exact test. Statistical
analyses were performed using R software (v4.3.2) [29]. For diagnostic test parameters,
Stevenson’s epiR (v2.0.66) was used; for the logistic regression models, Harrell’s rms (v6.7.1)
was used; and for interpreting the regression results on the plot, Lüdecke’s sjPlot (v2.8.15)
packages were used. Statistical significance was set at p < 0.05.

3. Results
From the 357 PRs, 308 teeth with clearly visible PARL and 308 teeth without PARL

were selected. Human observers collected 100 (32.5%) teeth with carious lesions (Group 1),
102 (33.1%) teeth with restoration in the dental crown (Group 2), and 106 (34.4%) teeth
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containing root canal filling teeth (Group 3) with PARL and imported them into DC sys-
tem for evaluation. The CNN found periapical lesions in 240 (77.9%) cases out of the
308 teeth with PARL: for 204 teeth, ’periapical radiolucency’ was reported, and for 36 teeth,
’root fragment’ was reported. However, the DC identified no PARL in 68 (22.1%) teeth
with PARL. The AI-based system detected no PARL in any of the groups without PARL:
70 (22.7%) teeth with radiographic signs of caries, 228 (74.0%) with restoration, and
10 (3.2%) with root canal filling without PARL (Tables 1 and 2).

Table 1. Agreement of human observers and the DC.

Human Observers

DC No PARL
(n = 376)

PARL
(n = 240) TOTAL

no PARL 308 (100%) 68 (22.1%) 376 (61.0%)

PARL 0 (0%) 240 (77.9%) 240 (39.0%)

Table 2. Distribution of the three groups.

No PARL
(n = 376)

PARL
(n = 240) TOTAL

Group 1 70 (22.7%) 100 (32.5%) 170 (27.6%)

Group 2 228 (74.0%) 102 (33.1%) 330 (53.6%)

Group 3 10 (3.2%) 106 (34.4%) 116 (18.8%)

The performance of the software was assessed based on its sensitivity, specificity,
positive and negative predictive values, and correctly classified proportion values (Table 3).
Noteworthily, the correctly classified proportion value can be considered the diagnostic
accuracy since it is expressed as a proportion of correct predictions (TP + TN) among all
predictions (TP + TN + FP + FN) [30,31]. The overall sensitivity, specificity, and diagnostic
accuracy of DC were 0.78, 1.00, and 0.89, respectively. Considering these parameters for
each group, Group 2 showed the highest values at 0.84, 1.00, and 0.95, respectively.

Table 3. The sensitivity, specificity, positive and negative predictive values, and correctly classified
proportion values (95% confidence interval limits) of the DC overall and for each group.

Overall Group 1 Group 2 Group 3 Canines Not Canines

sensitivity 0.78
(0.73, 0.82)

0.79
(0.70, 0.87)

0.84
(0.76, 0.91)

0.71
(0.61, 0.79)

0.27
(0.11, 0.50)

0.82
(0.77, 0.86)

specificity 1.00
(0.99, 1.00)

1.00
(0.95, 1.00)

1.00
(0.98, 1.00)

1.00
(0.69, 1.00)

1.00
(0.85, 1.00)

1.00
(0.99, 1.00)

positive
predictive value

1.00
(0.98, 1.00)

1.00
(0.95, 1.00)

1.00
(0.96, 1.00)

1.00
(0.95, 1.00)

1.00
(0.54, 1.00)

1.00
(0.98, 1.00)

negative
predictive value

0.82
(0.78, 0.86)

0.77
(0.67, 0.85)

0.93
(0.90, 0.96)

0.24
(0.12, 0.40)

0.58
(0.41, 0.74)

0.85
(0.80, 0.88)

a correctly
classified

proportion value

0.89
(0.86, 0.91)

0.88
(0.82, 0.92)

0.95
(0.92, 0.97)

0.73
(0.64, 0.81)

0.64
(0.48, 0.78)

0.91
(0.88, 0.93)
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The results of the logistic regression models showed that the tooth type has a signifi-
cant effect (p < 0.0001) on the prediction rate of DC. The AI-based system showed lower
probability values for detecting PARL in the case of central incisors, wisdom teeth, and
canines, with the latter showing the lowest values (Figure 2). In line with this result, the
sensitivity and diagnostic accuracy of DC for detecting PARL on canines showed lower
values at 0.27 and 0.64, respectively (Table 2).
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Among teeth with PARL, 113 out of the 308 teeth were maxillary teeth. The DC
system identified periapical lesions in 82 teeth, though 31 teeth with PARL remained
undetected. Of the correctly diagnosed PRs, 50 contained PGAS (72.5%), while of the PRs
with unidentified PARL, 19 contained PGAS (72.7%). Fisher’s Exact test showed that PGAS
does not have a significant effect (p = 1) on the detection of PARL in the upper teeth.

The opacities of the aluminum balls embedded in the periapical area of the central
incisor, canine, and the first molar showed no distortion on the PRs of the prepared
casts (Figure 3).
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4. Discussion
Our retrospective study aimed to determine the reliability of the AI-based DC

system in predicting PARL on PRs as observed by human observers. Several other
studies [6,23,25,26,32–38] show the scientific interest in detecting PL on different imaging
modalities supported by CNN-based algorithms.

The model pipeline we applied was as follows: First, an ROI detection algorithm
was trained specifically for teeth detection. The training dataset comprised around
4500 radiographs of teeth that were tagged, including instances of missing teeth. The
models were designed to identify individual teeth, precisely outline their borders, and
assign each tooth a unique identifier. The task was performed using a two-stage detector,
Mask R-CNN, with a pretrained ResNet-101 backbone. The region of interest was defined
based on the model’s object detection predictions, which included bounding boxes and
segmentation masks, allowing for the assignment of numerical values to each tooth. To
define the mouth region, the coordinates were determined by identifying the minimum
and maximum x and y values of all detected teeth and then extending this area by a set
number of pixels.

Initially, pseudo segmentations obtained from a pre-trained model were added to
all panoramic photos. Following this, each image was cropped based on the predic-
tions from the ROI detector. These cropped images were then input into the model for
further processing [39,40].

The architecture selected for the model was Cascade R-CNN, which was trained
on 5000 partially annotated PRs containing periapical lesions and acquired by various
panoramic imaging units. In contrast to the Mask R-CNN model, Cascade R-CNN iter-
atively improves object recognition and segmentation by refining the bounding boxes.
Image classification is performed by taking the average outcome for each cascade layer.
This enhances the accuracy of forecasting and mitigates the problem of overfitting [41]. To
enhance the model’s performance and generalization, various augmentations were applied
to the input data. These included random cropping, rotation, brightness adjustments,
contrast variations, downscaling, blurring, noise addition, optical and grid distortions, and
contrast-limited adaptive histogram equalization (CLAHE) [36].

The PRs of the selected teeth were imported individually into the DC system for
assessment. The DC recognized and numbered the teeth, and then highlighted the patho-
logical lesions detected for each tooth. For the detected periapical lesion of the selected
tooth, the term ‘Periapical radiolucency’ appeared under the name of the lesion detected
by the DC. The anatomical localization of the PARL detected was indicated by the software
with a green bounding box. Noteworthily, the DC assigns the term ‘Root fragment’ in
progressive cases where carious lesions had almost destroyed the tooth crown. These cases
were recorded manually and managed as the DC indicated the lesion.
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Li et al. [34] developed a CNN to detect caries and periapical periodontitis on peri-
apical radiographs. They used 4129 periapical radiographs for training, validation, and
testing of the ResNet-18-based CNN. The proposed DL model achieved sensitivity and
specificity values of 0.82 and 0.84, respectively. The sensitivity and specificity values of
the proposed AI model were comparable with our results. Additionally, Issa et al. [35]
examined the accuracy of the U-Net-based DC system in the detection of PLs on periapical
radiographs. A total of 60 teeth were evaluated by the DC, resulting in a sensitivity value
of 0.92 and a specificity value of 0.97. Even though the sensitivity value was higher than
what we obtained, the specificity value was in line with the present study. In their study,
Pauwels et al. [37] aimed to compare the diagnostic performance of CNN with the perfor-
mance of human observers for the detection of simulated periapical lesions on periapical
radiographs. They created ten bone defects in bovine ribs to simulate PLs and acquired the
periapical radiographs. The latter were evaluated by three oral radiologists and assessed
by the proposed CNN. The human observers obtained a sensitivity value of 0.58, whilst
the CNN showed a value of 0.79. The specificity values were similar in both cases, at 0.88
and 0.83, respectively. Although the sensitivity values were comparable in both studies,
the specificity was higher in our study.

To the best of our knowledge, there is only a limited number of studies available
assessing the performance of PL detection on PR radiographs. Celik et al. [23] examined
ten different DL models’ performance in the detection of PL using 357 PRs. The highest
sensitivity values were achieved using YOLOv3 and Dynamic R-CNN: 0.875 and 0.818,
respectively. In a separate study, Ba-Hattab et al. [6] developed a DL architecture and
tested it on 143 PRs comprising 299 PLs and reported overall sensitivity and specificity
values of 0.722 and 0.856, respectively. These findings are comparable with our overall
sensitivity and specificity values of 0.78 and 1.0, respectively. Notably, Ekert et al. [26]
obtained a lower overall sensitivity value (0.65) using a deep learning algorithm based on
six independent observers’ evaluations of PLs on 85 PRs, with the results of diagnostic
performance reported by tooth type. The lowest sensitivity value of 0.52 was achieved
for canines, similar to our study where the sensitivity was also the lowest among the
tooth types (0.27). Additionally, PL detection of incisors and wisdom teeth showed lower
probability values of the DC system. Thus, we considered it to be reasonable to examine
the possible effect of PGAS and distortion of depicted periapical areas on PL detection.
Nevertheless, based on the results of Fisher’s exact test (p = 1) applied for PGAS and the
resulting distortion-free depiction of the aluminum balls on PRs, these factors might be
excluded. In another study, Song et al. [25] used a U-Net-based CNN for the segmentation
of PLs on PRs. The PLs were manually labeled by three oral and maxillofacial radiologists.
They tested the software on 180 PLs, where the software segmented 147 PLs as PL and
the sensitivity values were between 0.74 and 0.82, which are comparable with our results
(0.78). Orhan et al. [36] used 100 PRs to assess the reliability of the DC system based on
the diagnosis of various pathologic conditions, including PLs on PRs. During the ground
truth evaluation, three oral and maxillofacial radiologists with different levels of clinical
experience assessed the radiographs. Subsequently, PRs were imported into the DC system
and the reliability was expressed in sensitivity and specificity values. In terms of PLs, the
DC achieved a sensitivity value of 0.46, which is lower than our result. The specificity
showed a value of 0.98 for the detection of PLs, which is in line with our findings (1.00).

Noteworthily, several studies were conducted reporting PL detection based on data
of spatial imaging modalities. Fu et al. [33] proposed and validated the CNN-based PAL-
Net algorithm for the detection of PLs on CBCT image data. They tested the software
on one internal independent and three external datasets comprising 324, 393, 464, and
929 teeth, respectively. The CNN achieved sensitivities of 0.94, 0.90, and 0.88. Similarly,
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Orhan et al. [32] investigated the reliability of the DC system in the detection of PL on
CBCT data. The U-Net-based system detected 142 PLs out of the 153 PLs, and a sensitivity
value of 0.89 was reported. In both CBCT-based studies, the sensitivity values were higher
than in our study (0.78), in which PRs were applied.

The aforementioned studies confirm the growing interest in AI-supported radio-
graphic assessments. Despite deep learning’s advancements in detection, challenges persist
for clinical integration. Studies require extensive, diverse datasets from various sources
for reliability. The absence of standardized, public datasets hinders comparison and evalu-
ation. The lack of a consistent evaluation standard makes it difficult to compare models
effectively or determine optimal practices and strategies. AI-based tools still need continu-
ous improvement to independently diagnose PLs on selected radiographs. Our study’s
limitation lies in the exclusive reliance on visual diagnosis through radiograph inspection
in panoramic radiographs (PRs). Achieving higher diagnostic accuracy requires integrating
clinical data like percussion, thermal, and electric pulp tests, which were not considered
here. Integrating these additional diagnostic measures could significantly enhance the
precision and reliability of our findings, warranting further investigation in future research
endeavors. The absence of histopathological examination to confirm PL diagnoses posed
a significant limitation in our study, affecting both human observers and AI assessments.
PRs were chosen due to their widespread use in dental imaging, offering broad anatomical
coverage with relatively low radiation doses. We have to emphasize the importance of
incorporating trans-hospital or hybrid datasets from diverse appliances and conditions for
robust deep-learning applications. Our reliance on PRs from a single device in a single
center further highlights a limitation warranting consideration in future research. In the
present study, we achieved sensitivity (0.78), specificity (1.00), and diagnostic accuracy
(0.89) values of a CNN-based AI tool for PL detection, which are in line with the reported
findings of the available scientific literature. At this level, further scientific studies need
to be conducted for a better understanding of how AI-based applications can support
clinicians in the field of dental radiology in the future.

5. Conclusions
Based on diagnostic parameters, including the sensitivity, specificity, and diagnostic

accuracy of DC, it can be concluded that the applied AI-based system supports the diagnosis
of PL on PRs and serves as a decision-support tool during radiographic assessments.
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