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Purpose: The aim of this study was to evaluate the diagnostic performance of artificial intelligence (AI)
application evaluating of the impacted third molar teeth in Cone-beam Computed Tomography (CBCT)
images.
Material and methods: In total, 130 third molar teeth (65 patients) were included in this retrospective
study. Impaction detection, Impacted tooth numbers, root/canal numbers of teeth, relationship with
adjacent anatomical structures (inferior alveolar canal and maxillary sinus) were compared between the
human observer and Al application. Recorded parameters agreement between the human observer and
Al application based on the deep-CNN system was evaluated using the Kappa analysis.
Results: In total, 112 teeth (86.2%) were detected as impacted by Al. The number of roots was correctly
determined in 99 teeth (78.6%) and the number of canals in 82 teeth (68.1%). There was a good
agreement in the determination of the inferior alveolar canal in relation to the mandibular impacted
third molars (kappa: 0.762) as well as the number of roots detection (kappa: 0.620). Similarly, there was
an excellent agreement in relation to maxillary impacted third molar and the maxillary sinus (kappa:
0.860). For the maxillary molar canal number detection, a moderate agreement was found between the
human observer and Al examinations (kappa: 0.424).
Conclusions: Artificial Intelligence (AI) application showed high accuracy values in the detection of
impacted third molar teeth and their relationship to anatomical structures.

© 2020 Published by Elsevier Masson SAS.
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1. Introduction

Tooth impaction is a common pathological dental condition
that develops due to diverse etiological factors such as systemic,
local, and genetic. Its prevalence ranges from 0.8 % to 3.6 % in the
general population and the prevalence of third molar impaction
ranges from 16.7% to 68.6% [1-3]. However, the most common
impaction reason is the lack of space on the arc and obstacles in the
eruption path of the tooth. Impacted teeth can cause dental
infections such as pericoronitis, periodontitis, orofacial pain, TM]
disorders, pathological fractures, cysts, and neoplasms. It can also
damage adjacent teeth. For all these reasons, tooth extraction may
require. Before performing dental surgical procedures, the root

* Corresponding author.
E-mail address: ibrahimsevkibayrakdar@gmail.com (LS. Bayrakdar).

https://doi.org/10.1016/j.jormas.2020.12.006
2468-7855/© 2020 Published by Elsevier Masson SAS.

canal numbers of these teeth and their relationships with
neighboring anatomical structures should be evaluated. The most
common radiographic methods in the diagnosis of tooth impaction
are periapical or panoramic radiographs. However, due to the
superimpositions, it is not possible to evaluate the root canal
number, shape, the relationship of the teeth in the upper jaw with
the maxillary sinus, and the inferior alveolar canal in the lower jaw.
For this reason, CBCT is accepted as the gold standard in the
radiographic evaluation of impacted third molars [1,4-6]. In
addition to this, with the idea of reducing the errors in subjective
evaluations related to the person, artificial intelligence applica-
tions have started in dental radiology. Recently, significant
developments in technologies related to artificial intelligence
have taken place in many areas. In the medical field, there are
studies and applications that it is effective in determination of the
diagnosis and prognosis, automatic prediction of pathology, and

Please cite this article as: K. Orhan, E. Bilgir, I.S. Bayrakdar et al., Evaluation of artificial intelligence for detecting impacted third molars
on cone-beam computed tomography scans, ] Stomatol Oral Maxillofac Surg, https://doi.org/10.1016/j.jormas.2020.12.006
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diseases, especially by recording information about the anamnesis
and symptoms [7,8].

Artificial intelligence (Al) is defined as the ability of a machine
to perform complex tasks imitating cognitive functions of humans
such as problem-solving, object and word recognition, and
decision making [8]. Machine learning is defined as an Al area
where computers automatically learn from the accumulation of
data. It refers to the learned situation when it improves
performance in future tasks after observations are made on the
data. Machine learning algorithms develop with increased
exposure to data; they do not just rely on rules, but they develop
with experience, they learn to give specific answers by evaluating
large amounts of data. Deep learning is a subset of machine
learning and forms the basis of most Al tools for image
interpretation. Deep learning structures referred to as convolu-
tional neural networks (CNNs), which can extract many features
from abstracted layers of filters, are mainly used for processing
large and complex images and has multiple layers of backpro-
pagation algorithms (Fig. 1).

These layers accumulate data from the inputs, and the Al
system provides step-by-step output after learning new features
from the data [8-12]. In short, machine learning is one of the main
subfields of artificial intelligence that enables a computer model to
learn and predict patterns by recognizing them. It is trained by
doing a lot of case analysis just like a radiologist. The Al model
develops thanks to increased training on new and larger datasets
[8,13,14].

There are many studies in the medical field about diagnostic Al
applications such as detection of lymph nodes, polyps, aneurysmes,
benign malignant tumors, bone age detection, orthognathic
surgery [15-19].

Studies in the field of oral and maxillofacial radiology
arerelatively new, and most have been carried out on panoramic
radiographs [8,9,13,20-23]. However, considering the
importance of the three-dimensional configuration of impacted
teeth and their relationship with anatomical structures, it is
necessary to perform these evaluations on three-dimensional
images.

In a recent systematic review by Kang et al. [24] stated that
radiographic findings, such as depth of impaction, proximity of the
tooth to the mandibular canal, surgical technique, intra-operative
nerve exposure, and surgeon’s experience were high risk factors of
inferior alveolar nerve deficit after surgical removal of impacted
third molar teeth.

Hence, the aim of this study was to evaluate the performance of
an artificial intelligence application according to CBCT, which is
used as the gold standard in determining the impacted third molar
teeth, determining the tooth structure (root-canal number), and
the relationship of these teeth with neighboring anatomical
structures.

ARTIFICIAL
INTELLIGENCE

broader concept of

DEEP LEARNING
subcategory of machine
learning suitable for self-
training algorithms and

feature extraction

MACHINE LEARNING
“systems" or algorithms that are
designed to learn structures, to

N intelligence
predict future outcomes

demonstrated by
machines

Fig. 1. The schematic drawing of artificial intelligence and its concepts.
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2. Material and methods

In this retrospective study, CBCT data of 130 impacted third
molar teeth from 65 patients, which were performed for various
dentomaxillofacial reasons in our clinic were included. The
research protocol was approved by the Non-interventional Clinical
Research Ethical Committee of Eskisehir Osmangazi University
(decision date and number: 28.05.2019/48) and was performed
under the principles of the Declaration of Helsinki.

2.1. Imaging

The same CBCT scanner (Promax 3D Mid; Planmeca, Helsinki,
Finland) was used for all patients, who were in a standing position
during imaging. Diagnostic settings were as follows: 94 kVp,
14 mA, 360° rotation, 27 s. The scanner offers multiple fields of
view (FOVs) allowing the dentist to select the optimum scan on a
case-by-case basis.

2.2. Evaluation

Manual examination of the images was done by a single
dentomaxillofacial radiologist (E.B.) using the CBCT software
system (Romexis Version 4.3.0). Impacted tooth numbers, root/
canal numbers of teeth, relationship with adjacent anatomical
structures (inferior alveolar canal and maxillary sinus) were
recorded. After this step, files were randomly uploaded to the deep
convolutional neural network (Diagnocat, Inc.). The detection of
parameters related to impacted teeth by the manual and artificial
intelligence (AI) methods were compared.

2.3. Model pipeline

A third molar study prepared by Diagnocat includes a
panoramic reformat of a specified jaw and three slice sections
with different slice orientation: vestibulo-oral, axial, and mesio-
distal. Slice sections that are accompanied by tomographic images
highlight the corresponding slices by cursor interaction. Diag-
nocat’s approach to numbering and segment of the teeth and the
mandibular canal is based on a deep convolutional neural network
using a U-net-like architecture.

A set of different models of fully convolutional nature prepare
teeth, jaws, and mandibular canal segmentations that are further
used to build a panoramic ribbon of both a study image and a
combined segmentation mask. All slices in a study are extracted
from a region of interest (Rol) of a panoramic image ribbon with a
1.5 mm step for vestibulo-oral and axial slices and variable step for
mesiodistal slices in a range that covers a whole tooth in the
corresponding direction. ROI for different slice sections is extracted
using specific context in different directions from different
combinations of mask ribbon segmentations. ROI context for the
vestibulo-oral section is calculated with an indent of 3 mm for
mandible case and 6 mm for maxilla case in all directions from a
combined segmentation mask of molar and jaw. Rol context for
axial slices is calculated using vestibulo-oral Rol from the previous
section, with 15 mm indent from the molar center in mesiodistal
direction, and as a range of extracted axial slices in the axial
direction. ROI context for the mesiodistal section is calculated
using corresponding ROIs from previous sections and with 9 mm
indent from a combined segmentation mask of molar and
mandibular canal for mandible case and a molar in maxilla case.

The study uses panoramic reformats of a corresponding ROI as
topogram images of vestibulo-oral and axial sections and an axial
maximum intensity projection of a panoramic ribbon as a
topogram image of the mesiodistal section. The mandibular canal
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Fig. 2. Al Model pipeline is schematically shown.

area is highlighted with white color at all topogram images and
slices where it intersects with a section ROI (Fig. 2 and 3).

2.4. Statistical analyses

Statistical analyses were performed on SPSS 21.0 Package Data
Program (SPSS 21.0 Software Package Program, Inc., Chicago, IL,
USA). Recorded parameters agreement between the manual
method and deep CNN system was evaluated using the Kappa
analysis.

3. Results

A total of 130 impacted third molar teeth, 42 maxillary, and
88 mandibular were evaluated in this study. The Al detected and
numbered almost all teeth numbered except only four impacted
teeth. In detail, 85 mandibular, 41 maxillary-impacted third
molars were correctly numbered by the Al (96.9% in total). The
program identified three of these four teeth as neighboring teeth
and one of them as missing teeth. In total, 112 teeth were detected

Fig. 3. The third molar and mandibular canal relations are schematically shown at
panoramic reconstruction.

as impacted (86.2%) by Al. 10 of the 18 teeth that were not
identified as impacted which were vertically positioned. The
number of roots was correctly determined in 99 teeth (78.6%) and
the number of canals in 82 teeth (68.1%). When comparing the
manually and the Al examinations; there was a good agreement in
the determination of the inferior alveolar canal in relation to the
mandibular impacted third molars (kappa: 0.762) as well as the
number of roots detection (kappa: 0.620). Similarly, there was an
excellent agreement in relation to maxillary impacted third molar
and the maxillary sinus (kappa: 0.860; For the maxillary molar
canal number detection, a moderate agreement was found
between manual and Al examinations (kappa: 0.424) (Table 1-3).

4. Discussion

Recent studies show that artificial intelligence applications
developed through machine learning and deep learning, are
promising for dentomaxillofacial radiology. The studies in the
field of dental radiology focus on object detection, tooth detection,
and teeth numbering [9-11,20,21,25,26]. Lee et al. [21] performed
dental segmentation on panoramic radiographs and reported that
they achieved high performance. They emphasized that these

Table 1
Impacted tooth and number detection frequencies of Al

Accuracy Impacted third molar
Impacted tooth detection Tooth number detection
Right 86.2 % 96.9 %
(n=112) (n=126)
False 13.8 % 31%
(n=18) (n=4)
Total 100 % 100 %
(n=130) (n=130)
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Table 2
Data of teeth whose tooth number is correctly detected in Al

J Stomatol Oral Maxillofac Surg xxx (XXxX) XXX—-XXX

Impacted third molar

Mandible Maxilla
Canal Canal relation detection Root number Canal number Sinus relation detection Root number Canal
detection detection detection detection number
detection
Right 92.9% 85.9% 83.5% 64.7% 92.7% 68.3% 65.9%
(n=179) (n=173) (n=71) (n=55) (n=38) (n=28) (n=27)
False 7.1% 14.1% 16.5% 35.3% 7.3% 31.7%
(n=6) (n=12) (n=14) (n=30) (n=3) (n=13) 34.1%
(n=14)
Total 100% 100% 100% 100% 100% 100% 100%
(n=285) (n=85) (n =85) (n =85) (n=41) (n=41) (n=41)

Table 3
The table shows the agreement between manual detection and detection by the
system.

Relation Impacted Third Molar

K p n
Inferior Alveolar Canal/ 0.762 P<0.001 85
Lower Impacted Molar
Macxillary Sinus/ 0.860 P<0.001 41
Upper Impacted Molar
Root Number Accuracy 0.620 P<0.001 126
Canal Number Accuracy 0.424 P<0.001 126

*Landis and Koch (1977) that stated the agreement was: k < 0.2, very low; k 0.21-
0.40, low; k 0.41-0.60, moderate; k 0.61-0.80, good; and k 0.81-1.00, excellent.

results are also important for forensic identification [21]. Zhang
et al. [27] have also announced that they have achieved significant
improvements in the identification of teeth, thanks to the method
they developed with deep learning. In their study, they performed
teeth detection and classification on periapical radiographs and
reported that they achieved high precision (95.8%) and recall
(96.1%) values [27]. Tuzoff et al. [23] also reported that they found
high precision for teeth detection and numbering on panoramic
radiographs [23]. In these studies, a deep CNN based machine
learning method has been generally used. However, Chen et al. [9]
used the faster R-CNN method in their studies and they reported
that the system obtained close results with the junior dentist in
teeth numbering and detection [9], and obtained a relatively lower
precision value than other studies in the literature. Based on these
study results, it may be possible to conclude that deep CNN is more
successful in teeth detection.

Most of the studies on teeth detection were performed on 2-D
radiographs [9,20,23]. However, few studies are evaluating the
effectiveness of artificial intelligence in teeth detection accuracy in
3-Dradiographs [26]. Miki et al. [26] categorized the teeth on CBCT
in 7 groups in their study. They have reported that they achieved
high accuracy for the classification performance of teeth [26]. In
this study, we examined the accuracy of teeth numbering of a
program using a deep CNN based machine learning method on
CBCT. In our study, only 4 of the 130 impacted teeth were
numbered incorrectly. In line with the literature, the system had
high accuracy.

Previous studies indicated that artificial intelligence was
effective for the detection of dental caries and apical lesions
[28-30]. Valizadeh et al. [28] reported that the artificial intelli-
gence models they used did not achieve sufficient accuracy in
determining enamel caries, but high accuracy in dentine caries
[28]. Besides; Lee et al. [31] reported that dental caries could be
detected in periapical radiographs with deep learning-based CNN
applications [31].

Fourcarde and Khonsari stated that [32] CNNs are not
replacement solutions for medical doctors, but will contribute to
optimize routine tasks and thus have a potential positive impact on
our practice. Specialties with a strong visual component such as
radiology and pathology will be deeply transformed.

There are limited studies regarding the impacted teeth, the
anatomical structure of these teeth, and their relationship with
adjacent vital structures. In a recent study, the detection of the
extra distal root in mandibular first molar teeth was evaluated in
panoramic radiographs, but the gold standard. It was found that
the deep learning system has high accuracy (86.9%) [33]. Jaskari
et al. [34] also evaluated a deep learning system for automatic
localization of the mandibular canals by applying a fully
convolutional neural network segmentation on clinically diverse
dataset of cone beam CT volumes. They stated that their deep
learning model localizes mandibular canals of the voxel-level
annotated set, highly accurate. The mean curve distance and
average symmetric surface distance was 0.56 mm and 0.45 mm,
respectively. Kwak et al. [35] generated an automatic mandibular
canal detection using a deep convolutional neural network. The
experiments were conducted with models based on 2D SegNet, 2D
and 3D U- for a dental segmentation automation tool. The 2D U-
Net in their study with adjacent images demonstrates higher
global accuracy of 0.82 than other U-Net variants. The 2D SegNet
showed the second highest global accuracy of 0.96, and the 3D U-
Net showed the best global accuracy of 0.99. Our results are similar
with these studies which we found a high accuracy for detecting
the tooth number and mandibular canal segmentations with deep
CNN system using U-net architecture.

5. Conclusion

In conclusion, the CNN method used in this study showed high
accuracy values in the detection of impacted third molar teeth and
their relationship to anatomical structures. Further algorithm and
machine learning methods can be used for improving the detection
of dentomaxillofacial anatomy and pathologies, especially for third
molar detection.
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